organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(2SR,3SR)-Isopropyl 3-{[dimethyl-(phenyl)silyl]methyl}-2-hydroxy-2-vinylpent-4-enoate

Bjoern Nelson, Markus Schürmann, Hans Preut* and Martin Hiersemann

Fakultät Chemie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany

Correspondence e-mail: hans.preut@tu-dortmund.de

Received 30 September 2010; accepted 2 November 2010

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.040; wR factor = 0.044; data-to-parameter ratio = 16.1.

The relative configuration of the title compound, C₁₉H₂₈O₃Si, which was synthesized using a dienolate-[2,3]-Wittig rearrangement, was corroborated by single-crystal X-ray diffraction analysis. The Si-C bond distances are in the range 1.858 (2)-1.880 (2) Å and an intramolecular $O-H \cdots O$ hydrogen bond helps to stabilize the molecular conformation.

Related literature

For background literature on Wittig rearrangements, see: Abraham et al. (2003); Hiersemann (1999, 2000); Lauterbach et al. (1999); Le Menez et al. (1995).

Experimental

Crystal data $C_{19}H_{28}O_3Si$ $M_r = 332.50$

Monoclinic Cc a = 18.4311 (15) Å

b = 12.0676 (10) Å	
c = 8.8508 (6) Å	
$\beta = 95.366 \ (7)^{\circ}$	
V = 1960.0 (3) Å ³	
Z = 4	

Data collection

Oxford Xcalibur S CCD	6497 measured reflections
diffractometer	3425 independent reflections
Absorption correction: multi-scan	2466 reflections with $I > 2\sigma(I)$
(CrysAlis RED; Oxford	$R_{\rm int} = 0.035$
Diffraction, 2008)	
$T_{\rm min} = 0.92, \ T_{\rm max} = 1.00$	

Mo $K\alpha$ radiation $\mu = 0.13 \text{ mm}^{-1}$

 $0.44 \times 0.12 \times 0.10 \text{ mm}$

T = 173 K

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	H-atom parameters constrained
$wR(F^2) = 0.044$	$\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$
S = 1.01	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
3425 reflections	Absolute structure: Flack (1983),
213 parameters	1066 Friedel pairs
2 restraints	Flack parameter: 0.09 (9)

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O3−H3···O2	0.84	2.17	2.664 (2)	118

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD; data reduction: CrysAlis CCD; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008): software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5668).

References

- Abraham, L., Pollex, A. & Hiersemann, M. (2003). Synlett, pp. 1088-1095.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hiersemann, M. (1999). Tetrahedron, 55, 2625-2638.
- Hiersemann, M. (2000). Synthesis, pp. 1279-1290.
- Lauterbach, C., Pollex, A. & Hiersemann, M. (1999). Eur. J. Org. Chem. pp. 2713-2724.
- Le Menez, P., Fargeas, V., Berque, I., Poisson, J. & Ardisson, J. (1995). J. Org. Chem. 60, 3592-3599.
- Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2010). E66, o3102 [doi:10.1107/S1600536810044818]

(2SR,3SR)-Isopropyl 3-{[dimethyl(phenyl)silyl]methyl}-2-hydroxy-2-vinylpent-4-enoate

B. Nelson, M. Schürmann, H. Preut and M. Hiersemann

Comment

The title compound I was synthesized from allylic alcohol (Le Menez *et al.*, 1995), followed by diastereoselective dienolate-[2,3]-Wittig rearrangement (Lauterbach *et al.*, 1999). Fig. 1 depicts the structure of isolated racemic major diastereomer of I. The relative configuration of the stereogenic centers in I can be attributed to the stereochemical course of the dienolate-[2,3]-Wittig rearrangement (Hiersemann, 1999, 2000; Abraham *et al.*, 2003).

Experimental

To a cooled (195 K) solution of LDA [prepared *in situ* from NEt₃ (4.2 mmol, 0.6 ml, 1.4 eq) and *n*-BuLi (2.3 *M* in hexanes, 4.2 mmol, 1.8 ml, 1.4 eq) in THF (15 ml, 3.5 ml/mmol NEt₃) was added dropwise a pre-cooled (195 K) solution of the allyl vinyl ether II ((Z,E)/(E,E) = 3/2, 3.0 mmol, 1 g, 1 eq) in THF (6 ml, 2 ml/mmol II). The reaction mixture was stirred at 195 K for 30 min, warmed to 273 K and stirred for an additional 60 min. After the addition of saturated aqueous NH₄Cl solution the aqueous layer was extracted with CH₂Cl₂ (3×) and the combined organic phases were dried (MgSO₄) and concentrated under reduced pressure. Purification by flash chromatography (cyclohexane/ethyl acetate 100/1 to 50/1) afforded the 1,5-hexadiene I (813 mg, 2.44 mmol, 82%) as a mixture of diastereomers (dr = 86/14) as colourless needles of the major diastereomer of (I) suitable for an X-ray crystal structure analysis.

 $R_f 0.60$ (cyclohexane/ethyl acetate 5/1); ¹H NMR (CDCl₃, 400 MHZ, δ): 0.23 (s, 3H^{minor}, CH₃), 0.24 (s, 3H^{major}, CH₃), 0.26 (s, 3H^{minor}, CH₃), 0.27 (s, 3H^{major}, CH₃), 0.58 (dd, $J = 14.6, 2.0 \text{ Hz}, 2H^{major}, CH_2$), 0.86 (dd, $J = 15.1, 12.1 \text{ Hz}, 2H^{minor}, CH_2$), 1.03 (dd, $J = 14.8, 2.3 \text{ Hz}, 2H^{minor}, CH_2$), 1.10 (dd, $J = 14.6, 12.6 \text{ Hz}, 2H^{major}, CH_2$), 1.20–1.24 (m, 6H, 2 × CH₃), 2.50 (ddd, $J = 12.1, 9.8, 2.3 \text{ Hz}, 1H^{minor}, CH), 2.59$ (ddd, $J = 12.6, 9.8, 2.0 \text{ Hz}, 1H^{major}, CH), 3.29$ (s, 1H^{minor}, OH), 3.33 (s, 1H^{major}, OH), 4.88–5.07 (m, 3 × 1H, CH), 5.13 (dd, $J = 10.5, 1.5 \text{ Hz}, 1H^{major}, H_2C=$), 5.23 (dd, $J = 10.5, 1.5 \text{ Hz}, 1H^{minor}, H_2C=$), 5.37 (dd, $J = 17.1, 1.5 \text{ Hz}, 1H^{major}, H_2C=$), 5.42–5.52 (m, 1H^{major}+1H^{minor}, CH), 5.56–5.65 (m, 1H^{minor}, CH), 5.78 (dd, $J = 16.8, 10.3 \text{ Hz}, 1H^{minor}, H_2C=$), 5.81 (dd, $J = 17.1, 10.5 \text{ Hz}, 1H^{major}, H_2C=$), 7.31–7.35 (m, 3H, 3 × CH^{Ar}), 7.42–7.48 (m, 2H, 2 × CH^{Ar}); ¹³C NMR (CDCl₃, 101 MHz, δ): -2.4 (CH₃^{minor}), -2.3 (CH₃^{major}), -1.5 (CH₃^{minor}), -1.4 (CH₃^{major}), 13.8 (CH₂^{minor}), 15.8 (CH₂^{major}), 21.8 (CH₃^{minor}), 21.9 (CH₂^{major), 47.6} (CH^{minor}), 47.8 (CH^{major}), 70.3 (CH), 80.9 (C^{major}), 115.3 (CH₂^{major}), 133.7 (CH^{major}), 133.8 (CH^{minor}), 138.0 (CH^{minor}), 139.0 (CH^{minor}), 139.4 (C), 174.6 (C); IR (cm⁻¹): 3505 (br,s) (v OH), 3070 (w), 3050 (w), 3020 (w), 2980 (m), 2955 (m), 2920 (w), 1725 (s) (v C=O), 1640 (w), 1620 (w), 1470 (w), 1455 (w), 1430 (m), 1400 (w), 1390

(w), 1375 (*m*), 1260 (*s*), 1190 (*s*), 1140 (*m*), 1105 (*s*), 1085 (*m*); Anal. Calcd. for C₁₉H₂₈O₃Si: C, 68.6; H, 8.5; Found: C, 68.6; H, 8.2; *M* = 332.51 g/mol.

Figures

Fig. 1. The molecular structure of the title compound, with displacement ellipsoids shown at the 30% probability level.

(2SR,3SR)-Isopropyl 3-{[dimethyl(phenyl)silyl]methyl}-2-hydroxy-2-vinylpent-4-enoate

Crystal data

C ₁₉ H ₂₈ O ₃ Si	F(000) = 720
$M_r = 332.50$	$D_{\rm x} = 1.127 \ {\rm Mg \ m}^{-3}$
Monoclinic, Cc	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: C -2yc	Cell parameters from 2622 reflections
a = 18.4311 (15) Å	$\theta = 2.2 - 29.1^{\circ}$
b = 12.0676 (10) Å	$\mu = 0.13 \text{ mm}^{-1}$
c = 8.8508 (6) Å	T = 173 K
$\beta = 95.366 \ (7)^{\circ}$	Block, colourless
$V = 1960.0 (3) \text{ Å}^3$	$0.44 \times 0.12 \times 0.10 \text{ mm}$
Z = 4	

Data collection

Oxford Xcalibur S CCD diffractometer	3425 independent reflections
Radiation source: Enhance (Mo) X-ray Source	2466 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.035$
Detector resolution: 16.0560 pixels mm ⁻¹	$\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$
ω scans	$h = -21 \rightarrow 22$
Absorption correction: multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2008)	$k = -14 \rightarrow 14$
$T_{\min} = 0.92, \ T_{\max} = 1.00$	$l = -10 \rightarrow 10$
6497 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.040$	H-atom parameters constrained

$wR(F^2) = 0.044$	$w = 1/[\sigma^2(F_o^2)]$
S = 1.00	$(\Delta/\sigma)_{\rm max} = 0.001$
3425 reflections	$\Delta \rho_{\text{max}} = 0.28 \text{ e} \text{ Å}^{-3}$
213 parameters	$\Delta \rho_{\rm min} = -0.21 \ {\rm e} \ {\rm \AA}^{-3}$
2 restraints	Absolute structure: Flack (1983), with how many Friedel pairs?

Primary atom site location: structure-invariant direct Flack parameter: 0.09 (9) Flack parameter: 0.09 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Si	0.22320 (4)	0.22241 (6)	0.31540 (6)	0.02606 (19)
C1	0.17453 (12)	0.2779 (2)	0.4769 (2)	0.0203 (6)
01	0.42490 (8)	0.24617 (13)	0.68996 (16)	0.0266 (5)
O2	0.50238 (10)	0.17136 (15)	0.53585 (17)	0.0373 (5)
C2	0.17399 (13)	0.2176 (2)	0.6094 (2)	0.0271 (7)
H2	0.1974	0.1474	0.6173	0.033*
O3	0.46978 (10)	0.32269 (15)	0.32107 (15)	0.0304 (5)
Н3	0.4988	0.2689	0.3297	0.046*
C3	0.13979 (16)	0.2578 (2)	0.7307 (3)	0.0375 (8)
H3A	0.1404	0.2155	0.8213	0.045*
C4	0.10492 (15)	0.3585 (2)	0.7211 (3)	0.0343 (8)
H4	0.0810	0.3856	0.8042	0.041*
C5	0.10492 (16)	0.4195 (2)	0.5904 (3)	0.0353 (7)
H5	0.0811	0.4894	0.5828	0.042*
C6	0.13942 (14)	0.3794 (2)	0.4699 (2)	0.0263 (7)
H6	0.1391	0.4225	0.3800	0.032*
C7	0.32344 (12)	0.2331 (2)	0.3641 (2)	0.0251 (6)
H7A	0.3377	0.1759	0.4413	0.030*
H7B	0.3475	0.2140	0.2722	0.030*
C8	0.35493 (12)	0.3452 (2)	0.4244 (2)	0.0200 (6)
H8	0.3331	0.3620	0.5211	0.024*
C9	0.43837 (13)	0.3388 (2)	0.4608 (2)	0.0224 (6)
C10	0.45930 (13)	0.2409 (2)	0.5653 (3)	0.0213 (7)
C11	0.44411 (16)	0.1640 (2)	0.8072 (3)	0.0338 (8)

H11	0.4981	0.1532	0.8184	0.041*
C12	0.40720 (19)	0.0556 (2)	0.7641 (3)	0.0637 (11)
H12A	0.4224	0.0303	0.6667	0.096*
H12B	0.3542	0.0659	0.7553	0.096*
H12C	0.4210	0.0001	0.8425	0.096*
C13	0.20207 (15)	0.0718 (2)	0.2902 (3)	0.0478 (9)
H13A	0.2285	0.0419	0.2082	0.072*
H13B	0.1496	0.0621	0.2645	0.072*
H13C	0.2170	0.0322	0.3847	0.072*
C14	0.19202 (14)	0.2949 (2)	0.1357 (2)	0.0411 (8)
H14A	0.1999	0.3748	0.1485	0.062*
H14B	0.1400	0.2805	0.1098	0.062*
H14C	0.2197	0.2677	0.0540	0.062*
C15	0.33501 (13)	0.4375 (2)	0.3156 (2)	0.0225 (7)
H15	0.3503	0.4310	0.2164	0.027*
C16	0.29856 (14)	0.5262 (2)	0.3452 (3)	0.0367 (8)
H16A	0.2823	0.5361	0.4430	0.044*
H16B	0.2883	0.5809	0.2690	0.044*
C17	0.46867 (14)	0.4419 (2)	0.5398 (3)	0.0278 (7)
H17	0.4481	0.4647	0.6292	0.033*
C18	0.52116 (15)	0.5018 (2)	0.4934 (3)	0.0445 (8)
H18A	0.5429	0.4813	0.4044	0.053*
H18B	0.5376	0.5659	0.5488	0.053*
C19	0.42038 (18)	0.2118 (2)	0.9503 (3)	0.0549 (10)
H19A	0.4444	0.2834	0.9707	0.082*
H19B	0.4338	0.1610	1.0348	0.082*
H19C	0.3674	0.2221	0.9394	0.082*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Si	0.0214 (5)	0.0303 (5)	0.0268 (4)	-0.0022 (5)	0.0040 (3)	-0.0070 (4)
C1	0.0163 (16)	0.0245 (16)	0.0198 (14)	-0.0033 (15)	-0.0006 (12)	0.0011 (14)
01	0.0297 (12)	0.0260 (12)	0.0247 (9)	0.0058 (9)	0.0058 (8)	0.0037 (8)
O2	0.0312 (14)	0.0389 (14)	0.0432 (12)	0.0143 (11)	0.0103 (10)	0.0044 (10)
C2	0.0278 (18)	0.0244 (16)	0.0290 (14)	0.0001 (15)	0.0017 (13)	0.0041 (14)
O3	0.0249 (13)	0.0384 (14)	0.0300 (10)	0.0074 (10)	0.0143 (9)	0.0014 (9)
C3	0.047 (2)	0.044 (2)	0.0217 (14)	-0.0211 (17)	0.0032 (13)	0.0031 (14)
C4	0.033 (2)	0.039 (2)	0.0348 (17)	-0.0160 (16)	0.0202 (14)	-0.0153 (15)
C5	0.0300 (19)	0.0297 (19)	0.0481 (16)	0.0024 (15)	0.0126 (14)	-0.0056 (16)
C6	0.0240 (18)	0.0287 (18)	0.0261 (14)	0.0005 (14)	0.0029 (13)	0.0064 (13)
C7	0.0236 (16)	0.0261 (17)	0.0256 (13)	-0.0003 (14)	0.0025 (11)	-0.0014 (13)
C8	0.0201 (18)	0.0242 (17)	0.0164 (11)	0.0007 (13)	0.0050 (11)	-0.0020 (12)
C9	0.0176 (18)	0.0270 (18)	0.0234 (14)	0.0007 (13)	0.0065 (12)	0.0019 (13)
C10	0.0158 (19)	0.0235 (19)	0.0239 (14)	-0.0067 (14)	-0.0018 (13)	-0.0014 (13)
C11	0.032 (2)	0.038 (2)	0.0309 (16)	0.0057 (16)	-0.0018 (14)	0.0100 (15)
C12	0.104 (3)	0.035 (2)	0.0538 (19)	-0.021 (2)	0.014 (2)	0.0047 (17)
C13	0.039 (2)	0.044 (2)	0.0622 (19)	-0.0111 (16)	0.0144 (16)	-0.0227 (17)

C14	0.0227 (18)	0.073 (2)	0.0273 (14)	-0.0045 (17)	-0.0008 (13)	-0.0037 (15)
C15	0.0206 (17)	0.0261 (18)	0.0211 (13)	-0.0022 (14)	0.0044 (12)	0.0028 (13)
C16	0.039 (2)	0.034 (2)	0.0363 (16)	0.0047 (16)	0.0031 (15)	0.0064 (14)
C17	0.0202 (18)	0.029 (2)	0.0336 (15)	-0.0023 (14)	0.0000 (13)	-0.0064 (14)
C18	0.040 (2)	0.037 (2)	0.0553 (19)	-0.0103 (18)	-0.0019 (16)	-0.0032 (16)
C19	0.092 (3)	0.046 (2)	0.0287 (16)	0.004 (2)	0.0137 (17)	0.0057 (16)
Geometric param	neters (Å, °)					
Si—C14		1.859 (2)	С9—	C17	1.50	8 (3)
Si—C7		1.862 (2)	С9—	C10	1.52	7 (3)
Si—C13		1.868 (2)	C11–	C19	1.49	4 (3)
Si—C1		1.880 (2)	C11–	C12	1.50	7 (3)
C1—C2		1.381 (3)	C11-	-H11	1.00	00
C1—C6		1.385 (3)	C12-	-H12A	0.98	00
O1—C10		1.325 (2)	C12-	-H12B	0.98	00
01—C11		1.454 (3)	C12-	-H12C	0.98	00
O2—C10		1.200 (3)	C13–	-H13A	0.98	00
С2—С3		1.383 (3)	C13–	-H13B	0.98	00
С2—Н2		0.9500	C13–	-H13C	0.98	00
О3—С9		1.427 (2)	C14-	C14—H14A		00
O3—H3		0.8400	C14—H14B		0.98	00
C3—C4		1.373 (3)	C14-	C14—H14C 0.9800		00
С3—НЗА		0.9500	C15—C16		C15—C16 1.303 (3)	
C4—C5		1.371 (3)	C15—H15		0.95	00
C4—H4		0.9500	C16–	-H16A	0.95	00
C5—C6		1.379 (3)	C16–	-H16B	0.95	00
С5—Н5		0.9500	C17—C18		1.30	4 (3)
С6—Н6		0.9500	C17—H17		0.95	00
С7—С8		1.547 (3)	C18—H18A		0.95	00
C7—H7A		0.9900	C18—H18B		0.95	00
С7—Н7В		0.9900	C19–	-H19A	0.98	00
C8—C15		1.496 (3)	C19–	C19—H19B 0.		00
С8—С9		1.543 (3)	C19–	-H19C	0.98	00
C8—H8		1.0000				
C14—Si—C7		112.71 (11)	O2—	С10—С9	123.	0 (2)
C14—Si—C13		108.16 (12)	01—	C10—C9	110.	7 (2)
C7—Si—C13	C7—Si—C13		01—	C11—C19	105.	7 (2)
C14—Si—C1		110.59 (11)	O1—C11—C12		109.	7 (2)
C7—Si—C1	Si—C1 109.45 (10)		C19—C11—C12		112.	8 (2)
C13—Si—C1	13—Si—C1 109.15 (12)		O1—C11—H11		109.	5
C2—C1—C6		117.6 (2)	C19–	-C11-H11	109.	5
C2—C1—Si		119.99 (19)	C12-	-C11-H11	109.	5
C6—C1—Si		122.36 (17)	C11–	-C12-H12A	109.	5
C10-01-C11		117.3 (2)	C11—C12—H12B		109.	5
C3—C2—C1		121.0 (2)	H12A	—C12—H12B	109.	5
С3—С2—Н2		119.5	C11–	-C12-H12C	109.	5
C1—C2—H2		119.5	H12A	—С12—Н12С	109.	5
С9—О3—Н3		109.5	H12E	3—C12—H12C	109.	5

C4—C3—C2	120.5 (2)	Si—C13—H13A	109.5
С4—С3—Н3А	119.8	Si—C13—H13B	109.5
С2—С3—НЗА	119.8	H13A—C13—H13B	109.5
C5—C4—C3	119.3 (2)	Si—C13—H13C	109.5
C5—C4—H4	120.3	H13A—C13—H13C	109.5
C3—C4—H4	120.3	H13B—C13—H13C	109.5
C4—C5—C6	120.1 (2)	Si-C14-H14A	109.5
C4—C5—H5	120.0	Si—C14—H14B	109.5
С6—С5—Н5	120.0	H14A—C14—H14B	109.5
C1—C6—C5	121.5 (2)	Si-C14-H14C	109.5
С1—С6—Н6	119.2	H14A—C14—H14C	109.5
С5—С6—Н6	119.2	H14B—C14—H14C	109.5
C8—C7—Si	118.22 (17)	C16—C15—C8	125.6 (2)
С8—С7—Н7А	107.8	C16—C15—H15	117.2
Si—C7—H7A	107.8	C8—C15—H15	117.2
С8—С7—Н7В	107.8	C15—C16—H16A	120.0
Si—C7—H7B	107.8	C15-C16-H16B	120.0
H7A—C7—H7B	107.1	H16A—C16—H16B	120.0
C15—C8—C9	110.6 (2)	C18—C17—C9	124.4 (2)
C15—C8—C7	111.55 (18)	C18—C17—H17	117.8
C9—C8—C7	111.3 (2)	С9—С17—Н17	117.8
С15—С8—Н8	107.8	C17—C18—H18A	120.0
С9—С8—Н8	107.8	C17—C18—H18B	120.0
С7—С8—Н8	107.8	H18A—C18—H18B	120.0
O3—C9—C17	110.6 (2)	С11—С19—Н19А	109.5
O3—C9—C10	108.6 (2)	C11—C19—H19B	109.5
C17—C9—C10	107.24 (19)	H19A—C19—H19B	109.5
O3—C9—C8	107.62 (18)	С11—С19—Н19С	109.5
С17—С9—С8	112.0 (2)	H19A—C19—H19C	109.5
С10—С9—С8	110.8 (2)	H19B—C19—H19C	109.5
O2—C10—O1	126.3 (3)		
C14—Si—C1—C2	162.39 (19)	C7—C8—C9—O3	66.2 (2)
C7—Si—C1—C2	-72.9 (2)	C15—C8—C9—C17	63.3 (2)
C13—Si—C1—C2	43.5 (2)	C7—C8—C9—C17	-172.12 (17)
C14—Si—C1—C6	-18.7 (2)	C15—C8—C9—C10	-177.0 (2)
C7—Si—C1—C6	106.0 (2)	C7—C8—C9—C10	-52.4 (2)
C13—Si—C1—C6	-137.6 (2)	C11-O1-C10-O2	4.0 (4)
C6—C1—C2—C3	-0.3 (3)	C11—O1—C10—C9	-174.6 (2)
Si—C1—C2—C3	178.7 (2)	O3—C9—C10—O2	8.1 (3)
C1—C2—C3—C4	0.7 (4)	C17—C9—C10—O2	-111.4 (3)
C2—C3—C4—C5	-0.7 (4)	C8—C9—C10—O2	126.1 (3)
C3—C4—C5—C6	0.3 (4)	O3—C9—C10—O1	-173.21 (19)
C2-C1-C6-C5	-0.1 (4)	C17—C9—C10—O1	67.3 (2)
Si—C1—C6—C5	-179.0 (2)	C8—C9—C10—O1	-55.2 (3)
C4—C5—C6—C1	0.1 (4)	C10—O1—C11—C19	159.6 (2)
C14—Si—C7—C8	74.11 (18)	C10-O1-C11-C12	-78.5 (3)
C13—Si—C7—C8	-167.35 (17)	C9—C8—C15—C16	-114.6 (3)
C1—Si—C7—C8	-49.40 (18)	C7—C8—C15—C16	121.0 (3)
Si—C7—C8—C15	-56.7 (2)	O3—C9—C17—C18	-6.0 (4)

Si—C7—C8—C9	179.26 (14)	C10—C9—C17—0	C18	112.3 (3)
C15—C8—C9—O3	-58.4 (3)	C8—C9—C17—C	18	-126.0 (3)
Hydrogen-bond geometry (Å, D—H A O3—H3···O2	°) <i>D</i> —H 0.84	H…A 2.17	<i>D…A</i> 2.664 (2)	<i>D</i> —Н… <i>А</i> 118

